Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind

نویسندگان

  • Noé Lugaz
  • Charles J. Farrugia
  • Chia-Lin Huang
  • Reka M. Winslow
  • Harlan E. Spence
  • Nathan A. Schwadron
چکیده

The interaction between Earth's magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000-100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values <1 for several hours on 17 January 2013. Simultaneous measurements by more than ten spacecraft in the near-Earth environment reveal the evanescence of the bow shock, the sunward motion of the magnetopause and the extremely rapid and intense loss of electrons in the outer radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Are energetic electrons in the solar wind the source of the outer radiation belt?

Using data from WIND, SAMPEX (Solar, Anomalous, and Magnetospheric Particle Explorer), and the Los Alamos National Laboratory (LANL) sensors onboard geostationary satellites, we investigate the correlation of energetic electrons in the 20-200 keV range in the solar wind and of high speed solar wind streams with relativistic electrons in the magnetosphere to determine whether energetic electrons...

متن کامل

Magnetosphere response to high-speed solar wind streams: A comparison of weak and strong driving and the importance of extended periods of fast solar wind

[1] Much attention has been focused on the reaction of the magnetosphere to the solar wind during the recent extended solar minimum (2006–2010). Although this period was exceptionally quiet when categorized by some parameters (e.g., the number of sunspots) the solar wind still contained features which impacted the Earth’s magnetosphere and caused geomagnetic disturbances. Recurrent corotating i...

متن کامل

Density and temperature of energetic electrons in the Earth’s magnetotail derived from high-latitude GPS observations during the declining phase of the solar cycle

Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006–November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies ∼0.1–1.0 MeV), in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electr...

متن کامل

Relativistic electron acceleration and decay time scales in the inner and outer radiation belts: SAMPEX

Ab__•S_.•_• High-energy electrons have been measured systematically in a low-altitude (520 x 675 km), nearly polar (inclination = 82 ø) orbit by sensitive instruments onboard the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX). Count rate channels with electron energy thresholds ranging from 0.4 MeV to 3.5 MeV in three different instruments have been used to examine relativistic...

متن کامل

Radial gradients of phase space density of the outer radiation belt electrons prior to sudden solar wind pressure enhancements

[1] When Earth’s magnetosphere is impacted by a sudden solar wind pressure enhancement, dayside trapped electrons are transported radially inwards, conserving their first and second adiabatic invariants (m and K). Thus, with magnetic field and particle flux measurements at geosynchronous orbit (GEO) before and after the impact, the phase space density (PSD) radial gradients of the particles pri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016